

Chair of Hydrology and River Basin Management

Prof. Dr. Ing. Markus Disse

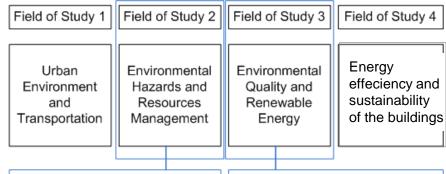
http://www.hydrologie.bgu.tum.de/

Lecture

Bachelor's program

Basis module hydrology

Essential fundamentals of hydrology


Supplement module hydrology

- Statistical analysis of hydrological data
- Soil hydrology
- Hydrological modeling

Hydrological field exercise

 A week-long course in which students will get to know manifold measurement instruments and techniques

Master's program

- Hydrological and Environmental River Basin Modelling
- Groundwater Hydraulics, Modelling and Management
- Flood Risk and Flood Management
- Integrated Water Resources Management

- Hydrological and Environmental River Basin Modelling
- Groundwater Hydraulics, Modelling and Management

1. Hydrology I and II

- Water Circle
- Water Balance (Budget) Models

2. Environmental monitoring and risk management

- Introduction to Environmental Monitoring
- Analysis of environmental data
- Introduction to Geostatistics

3. Hydrological and Environmental River Basin Modeling

- Overview on eco-hydrological modeling.
- Assessment of mathematical descriptions for plant growth and associated water and nutrient transport
- Water quality, and the influence of different land-uses and management forms.
- Eco-hydrological model (SWAT)

4. Flood risk and management

- Concept
- Apllication
- Case Study (MATLAB)

5. Groundwater - hydraulics, modeling and management

- Groundwater hydraulics (basic equations)
- Conceptualization of groundwater modelling
- Finite difference numerical solution for solving steady and transient flow
- The Farm Process Version 2 (FMP2)
- Calibration for parameter estimation of observed field data (PMWIN, Modflow, PEST)
- Contamination and heat transport
- 3D groundwater flow and transport modelling (PMWIN, Modflow)

6. Integrated Water Resources Management

- How to Implement IWRM
- Management and planning tools
- IWRM Performance and Evaluation
- River Basin Management Overview

7. Geostatistics and environmental monitoring

Supervised PhD Thesis (finished this year)

The Effect of Climate Change on Water Resources Potential and Flood Regimes of

Omo-Gibe River Basin

PhD thesis of Abdella Kemal

- Core of the PhD project is to investigate the effects of climate change on water resources potential
- Aims to enhance the ability of designers and decision makers to manage available water resources
- Methodical cores of the thesis are
 - Downscaling techniques for climate model outputs
 - Modeling inflows using the SWIM model

0	35°010*E	40°0'0"E	45°0'0"E	
The Tekeze	A			
Blue Nile	-N.C	22/2	-11	10*0
 Baro-Akobo 				
Omo Gibe				
account for 83% of total	-N°C		-5	5*0°0
surface runoff of Ethiopia		170 85	0 170 340 Kilometers	
	35°0'0"E	40°0'0"E	45°00°E	

Planned dam: Gibe III

Volume 14 km³

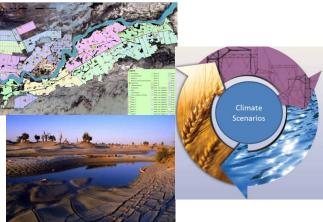
Length 610 m

Area 210 km²

Installed 1870 MW capacity

Annual electricity 6500 GWh (estimated)

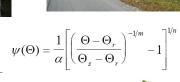
Research Areas


Sustainable Water and Land Management in Arid Areas

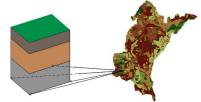
- Interaction surface water ground water
- Ecosystem functions and services

Flood Risk Management

- Decision support systems
- Flood forecast


Catchment Hydrology

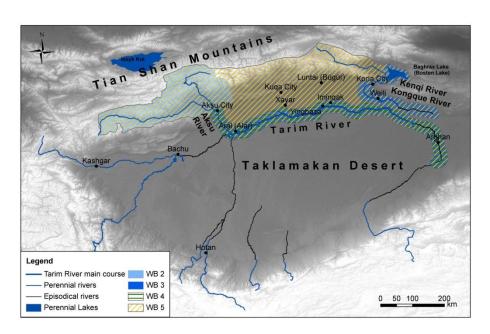
- Hydrological and meteorological measurements
- Snow hydrology
- Hydraulic properties of soils


Process Based Hydrological Modelling

- Climate and Land Use Changes
- Nutrient and Pesticide Transport, Erosion
- Decentralized Flood Protection Measures

Projects (ongoing) - SuMaRiO

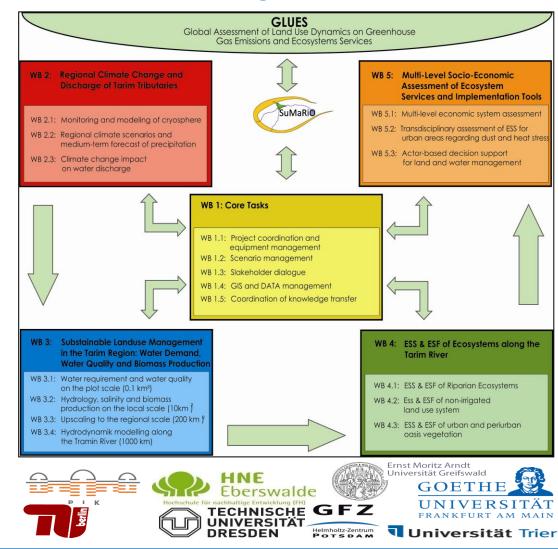
SuMaRiO – Sustainable Management of River Oases along the Tarim River / China


- Extremely arid region
- Tarim River is major source of fresh water for
 - Agriculture
 - All commercial sectors
 - Urban life
- Irrigation farming already leads to significant transformation of riverine ecosystems
- · "Ecosystem Services" are affected
- Current water resources management is not sustainable
- Consequences of which are
 - environmental problems and as a further result
 - social problems

Projects (ongoing) - SuMaRiO

SuMaRiO – Sustainable Management of River Oases along the Tarim River / China

Projects (ongoing)


SuMaRiO – Sustainable Management of River Oases along the Tarim River / China

Basic project aims

- To optimize water use (ground- and fluvial water) in a sustainable way
- This aims to allow for a reaction on the effects of climate change in sufficient time

Basic methodology

- Analysis of ecosystem services (right scheme)
- Integration of stakeholders, local decision makers and residents in the research process
- Introduction of participatory approaches in the development of sustainable land management structures

Projects (ongoing) – Adapt Risk

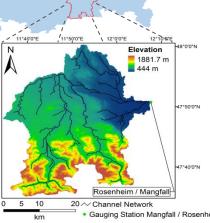
Adaptive risk-informed decision making for flood management and water resource planning under climate change uncertainty

Project Aim:

To develop a methodological framework of decision making under uncertainty that allows taking into account the adaptability of the infrastructure

Key points:

Rigorous mathematical modelling of uncertainties


 Bayesian decision analysis for assessing the optimality of risk mitigation strategies.

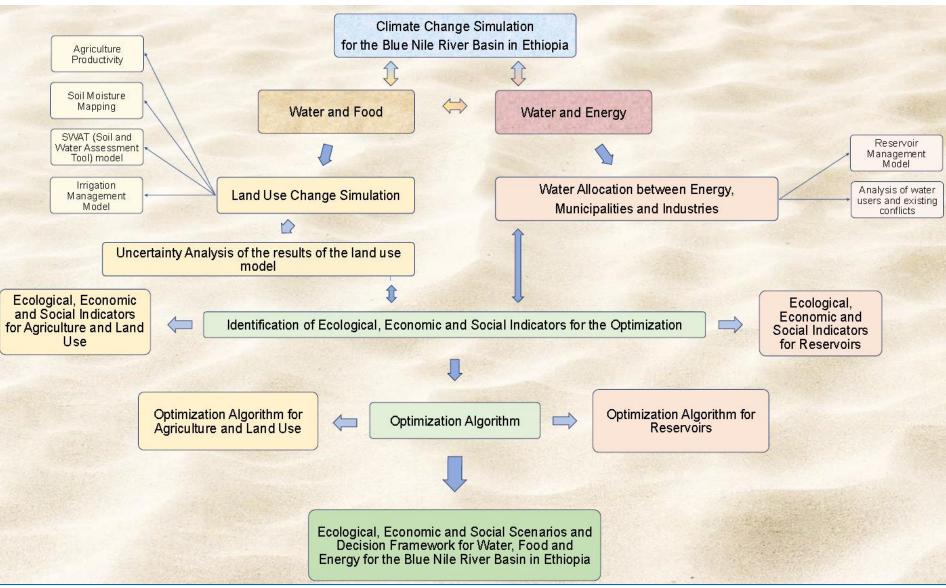
- Application of hydrological and hydraulic models
- Assessment of model uncertainty
- Impact of natural hazards for the safety of critical infrastructure
- Collaboration with policy makers and industry

Focus hydrological modelling and evaluation of flood protection measures conducted

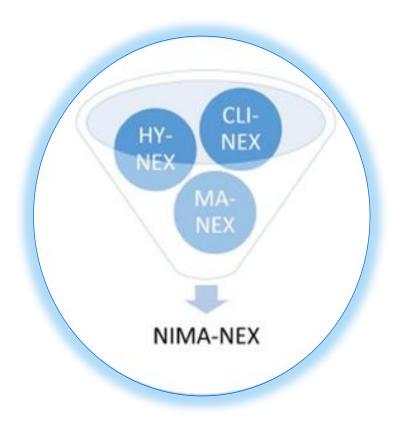
by Jochen Scholtes at the chair of Hydrology and River Basin Management

Projects (ongoing) - NIMA-NEX

Nile Management - Nexus Expert Tool



Projects (ongoing) - NIMA-NEX



Projects (ongoing) - NIMA-NEX

Aims and expecting outcomes

- Developing an integrated management tool for the Blue Nile River Basin in Ethiopia, the NIMA-NEX-project will optimize the overall use of the Nile waters.
- A sustainable use of the water resources, all relevant factors (climate, natural resources, economy and society) will be taken into account, so as to maximize the overall benefits.
- The political stability and peaceful coexistence of the countries that share the Nile waters will stay in the first line for the whole project.

THANK YOU!

